将其代入曲线 C_2 整理可得: $t^2-3\sqrt{2}$ t+4=0.

设A, B对应的参数分别为 t_1 , t_2 , 则 $t_1+t_2=3\sqrt{2}$. $t_1t_2=4$. 所以 $|AB|=|t_1-t_2|=\sqrt{(t_1+t_2)^2-4t_1t_2}=\sqrt{(3\sqrt{2})^2-4\times 4}=\sqrt{2}$.

考点三:综合应用

例 3. 在直角坐标系 xOy 中, 直线 l 过 M(2,0), 倾斜角为 $\alpha(\alpha \neq 0)$. 以 O 为极点, x 轴非负半轴为极轴, 建立极坐标系, 曲线 C 的极坐标方程为 $\rho \sin^2 \theta = 4\cos \theta$.

- (1) 求直线 l 的参数方程和曲线 C 的直角坐标方程:
- (2) 已知直线 l 与曲线 C 交于 A 、B 两点, 且|MA|=2|MB|, 求直线 l 的斜率 k.

解析: (1) 直线
$$l$$
 的参数方程为 $\begin{cases} x=2+t\cos\alpha, \\ y=t\sin\alpha \end{cases}$ $(t为参数),$

由 $\rho \sin^2 \theta = 4\cos\theta$, 得 $\rho^2 \sin^2 \theta = 4\rho \cos\theta$, ∴ 曲线 C 的直角坐 标方程为 $y^2=4x$.

(2) 把 $x=2+t\cos\alpha$ 、 $y=t\sin\alpha$ 代入 $y^2=4x$,得 $(\sin^2\alpha)t^2-(4\cos\alpha)t-$ 8=0.

设A,B 两点对应的参数分别为 t_1 与 t_2 ,则 $t_1+t_2=\frac{4\cos\alpha}{\sin^2\alpha}$

(1), $t_1 t_2 = -\frac{8}{\sin^2 \alpha} \cdots (2)$

易知 t_1 与 t_2 异号,又:|MA|=2|MB|: $t_1=-2t_2$ ······ (3),将

(3) 代人 (1) (2) 式,消去
$$t_1$$
得: $-t_2 = \frac{4\cos\alpha}{\sin^2\alpha} \cdot \cdot \cdot \cdot \cdot (4)$, $-t_2^2 = -\frac{8}{\sin^2\alpha}$

(5),将 (4) 式代人 (5) 式得:
$$-2 \times \frac{16\cos^2\alpha}{\sin^4\alpha} = -\frac{8}{\sin^2\alpha}$$

整理得: $tan\alpha=\pm 2$, 即 $k=\pm 2$.

【点评】本题主要考查直线参数方程、极坐标方程转化为 直角坐标方程、韦达定理、消参法、三角函数,综合性强.

变式训练 3: 将圆 $\begin{cases} x=2\cos\theta, \\ y=2\sin\theta \end{cases}$ (θ 为参数) 上的每一个点的 横坐标保持不变,纵坐标变为原来的 $\frac{1}{2}$,得到曲线 C.

(1) 求曲线 C 的普通方程;

(2) 设A, B是曲线C上的任意两点, 且 $OA \perp OB$, 求 $\frac{1}{|OA|^2} + \frac{1}{|OB|^2}$ 的值.

解析: (1) 设 (x_1, y_1) 为圆上的任意一点, 在已知的变

换下变为
$$C$$
 上的点 (x, y) , 则有 $\begin{cases} x=x_1, \\ y=\frac{1}{2}y_1. \end{cases}$ 因为 $\begin{cases} x_1=2\cos\theta, \\ y_1=2\sin\theta \end{cases}$ $(\theta \)$

参数),所以
$$\begin{cases} x=2\cos\theta, \\ y=\sin\theta \end{cases}$$
(θ 为参数),所以 $\frac{x^2}{4}+y^2=1$.

(2) 以坐标原点 O 为极点, x 轴正半轴为极轴, 建立极 坐标系, 在极坐标系中, 曲线 C 的普通方程化为极坐标方程 得 $\frac{\rho^2 \cos^2 \alpha}{4} + \rho^2 \sin^2 \theta = 1$. 设 $A(\rho_1, \theta)$, $B(\rho_2, \theta + \frac{\pi}{2})$, 则 $|OA| = \rho_1$,

$$|OB| = \rho_2, \quad \boxed{\mathcal{M}} \frac{1}{|OA|^2} + \frac{1}{|OB|^2} = \frac{1}{\rho_1^2} + \frac{1}{\rho_2^2} = \frac{\cos^2\theta}{4} + \sin^2\theta + \frac{\cos^2(\theta + \frac{\pi}{2})}{4} + \sin^2(\theta + \frac{\pi}{2}) = \frac{5}{4}.$$

变式训练 4: 在直角坐标系 xOy 中, 圆 C_1 : $(x-2)^2+(y-4)^2$ =20.,以坐标原点O为极点,x轴的正半轴为极轴建立极坐 标系, C_2 : $\theta = \frac{\pi}{2} (\rho \in \mathbb{R})$.

- (1) 求 C_1 的极坐标方程和 C_2 的平面直角坐标系方程;
- (2) 若直线 C_3 的极坐标方程为 $\theta = \frac{\pi}{6} (\rho \in \mathbb{R})$, 设 $C_2 = C_1$ 的交点为 $O_{\searrow}M$, C_3 与 C_1 的交点为 $O_{\searrow}N$, 求 ΔOMN 的面积.

解析: (1) 因为圆 C_1 的普通方程为 $\gamma^2+\gamma^2-4x-8y=0$, 把 $x = \rho \cos\theta$, $y = \rho \sin\theta$ 代入方程得 $\rho^2 - 4\rho \cos\theta - 8\rho \sin\theta = 0$, 所以 C_1 的极坐标方程为 ρ =4cos θ +8sin θ , C2 的平面直角坐标系方程为 $y=\sqrt{3}x$.

(2) 分别将 $\theta = \frac{\pi}{3}$, $\theta = \frac{\pi}{6}$ 代人 $\rho = 4\cos\theta + 8\sin\theta$, 得 $\rho_1 = 2 + \frac{\pi}{6}$ $4\sqrt{3}$, ρ_2 = $4+2\sqrt{3}$, 则 ΔOMN 的面积为 $\frac{1}{2}$ × $(2+4\sqrt{3}$)×(4+ $2\sqrt{3} \times \sin(\frac{\pi}{3} - \frac{\pi}{6}) = 8 + 5\sqrt{3}$.

责任编辑 徐国坚

